Foundations of Computational Data Analysis
Title  Foundations of Computational Data Analysis (53110) 

Quarter  Winter 2019 
Instructor  Amitabh Chaudhary (amitabh@cs.uchicago.edu) 
Website  
Syllabus  Foundations of Computational Data Analysis covers mathematical prerequisites for the Data Analytics Specialization courses in machine learning, and largescale data analytics (MPCS 53111 and 53112): basic statistics and linear algebra. Topics in statistics include discrete and continuous random variables, discrete and continuous probability distributions, variance, covariance, correlation, sampling and distribution of the mean and standard deviation of a sample, central limit theorem, confidence intervals, maximum likelihood estimators, and hypothesis testing. Topics in linear algebra include Gaussian elimination, matrix transpose and matrix inverse, eigenvectors and eigenvalues, and singular value decompositions. The languages Python and R will be used for implementation, analysis, and visualization. 
Prerequisites (Courses)  MPCS 50101 Math for Computer Science: Discrete Mathematics
In all the above courses a grade of B+ or above is required. Please contact the instructor if you have, instead, equivalent courses or experience, or meet most but not all of the requirements. 
Prerequisites (Other)  Core Programming; Univariate Calculus and Basic Multivariate Calculus (double integrals, partial derivatives). 
Satisfies  Elective

Time  Saturday 10am1pm 
Location  Ryerson 251 