Time Series Analysis and Stochastic Processes
Title  Time Series Analysis and Stochastic Processes (58020) 

Quarter  Summer 2015 
Instructor  Andrew Siegel (siegela@uchicago.edu) 
Website  
Syllabus  Course Description Stochastic processes are driven by random events. They can be used to model phenomena in a broad range of disciplines, including science/engineering (e.g. computational physics, chemistry, and biology), business/finance (e.g. investment models and operations research), and computer systems (e.g. client/server workloads and resilience modeling). In many cases relatively simple stochastic simulations can provide estimates for problems that are difficult or impossible to model with closedform equations. In this class we focus on the rudimentary ideas and techniques that underlie stochastic time series analysis, discrete events modeling, and Monte Carlo simulations. Course lectures will focus on the basic principles of probability theory, their efficient implementation on modern computers, and examples of their application to real world problems. Upon completion of the course, students should have an adequate background to quickly learn in depth specific Monte Carlo approaches in their chosen field of interest.
Textbooks
Course Contents
Coursework 4 or 5 biweekly homework assignments. Weekly readings. No exams.
Prerequisites

Prerequisites (Courses)  Core programming requirement 
Prerequisites (Other)  
Satisfies  
Time  TBD 
Location  TBD 